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Using the example of the problem of a supersonic flow about bodies with a 
forward separation zone, the authors propose a theoretical model based on 
the model of an ideal fluid with allowance for a turbulent shear layer on 
the boundary of the separation region. 

The concept of an ideal fluid has become more widely used in recent years in the model- 
ing of supersonic flow about solids of revolution with maximal Reynolds numbers, including 
cases of separated flow. According to [1-5], in the solution of nonsteady Eulerian equa- 
tions by finite-difference methods, the wave mechanism of perturbation transfer plays a 
large role in the formation of circulating flows. The solution of the problem is also signi- 
ficantly affected by artificial viscosity due to errors of the difference approximation of 
the initial differential equations. In principle, when reproducing flows within the frame- 
work of the ideal fluid model, it can be assumed that the wave mechanism of formation of cir- 
culating flows is the predominant mechanism and that the effect of artificial viscosity 
should be reduced to a minimum. Such an approach is reflected in the development of adap- 
tive algorithms based on Godunov's nonsteady difference scheme in conjunction with movable 
computational grids consistent with gasdynamic features of the flow discovered during the 
calculation (see [1-3], for example). The scheme was used in [2] to calculate separated 
flow of a supersonic stream about a blunt body with a projecting conical nozzle. Here, a 
tangential discontinuity was shed from the sharp edge of the nozzle. However, it should be 
noted that in this case there are serious restrictions on the exchange of momentum and 
energy between the external flow and the flow in the circulation zone. 

An alternative approach to the calculation of flow about bodies under conditions of flow 
separation was developed in [4, 5]. This approach is based on the use of the artificial vis- 
cosity inherent in difference schemes and affecting the turbulent transport properties seen 
experimentally. Problems are solved using through-count difference methods (the Godunov 
method and the method of "fluid particles in a cell") in combination with stationary grids. 
As was shown in [5] in the example of the calculation of supersonic flow about a cylinder 
with a projecting disk-shaped nozzle, preference cannot be given to any of the methods men- 
tioned (the wave resistance coefficient is nearly independent of the choice of theoretical 
method). A study made of the effect of the mesh of the grid on the calculated results 
showed that the results were close on a sequence of transformed rectangular grids. This per- 
mitted the conclusion that thesolutions thus obtained are unique, and thus basically re~ 
solves the question of the adequacy of the mechanism of physical diffusion and artificial 
diffusion due to artificial viscosity. 

Here, we compare the above-mentioned methods of calculating supersonic flow about bodies 
under conditions of flow separation (Fig. ia) within the framework of the ideal fluid model. 
We attempt to evaluate the adequacy of this approximate approach by comparing theoretical 
and experimental results. Finally, we give a detailed description of the hybrid method 
proposed in [6]. This method allows for the presence of a turbulent shear layer on the 
boundary of the separation region. 

The effect of artificial viscosity on the solution of problems for nonseparated flows 
has been fairly well studied (see [7], for example). It ensures stable calculation of the 
nonremovable discontinuities which arise in supersonic flows without complements to stabi- 
lize the system of Eulerian eguations. As a result, it is possible to obtain a monotonic 
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Fig. i. Physical pattern of flow about a cylinder with a cylin- 
der with a disk (a) (the main structural elements: I) leading 
shock wave; 2) rarefaction sheafs; 3) Mach line; 4) compression 
waves; 5) separation zone; 6) turbulent shear layer) and theo- 
retical regions with a rectangular grid (b), an oblique grid 
(c), and an oblique grid with a superimposed turbulent shear 
layer (d). 

solution in the neighborhood of shock waves and to determine contact and tangential discon- 
tinuities. However, the approach at the same time leads to the erosion of these surfaces in 
several cells of the computing grid. As was shown by test calculations of model unidimen- 
sional problems in [7], the width of the transition region and the maximum gradient of the 
solution in this region are determined mainly by the dependence of the artificial viscosity 
coefficient on the mesh of the grid and the transport velocity. Contact discontinuities are 
particularly eroded. 

More complicated and less studied is the question of the effect of artificial viscosity 
on the solution of two-dimensional problems of supersonic flow about bodies under flow sepa- 
ration conditions. Analytical and numerical studies of laminar and turbulent separated flows 
of an incompressible fluid by means of first-order difference methods of approximation on 
rectangular grids indicate the presence of an artificial viscosity which is specific to two- 
dimensional problems and is connected with slanting of the flow relative to the boundaries 
of the grid cells. Experience in the solution of various problems has shown that the arti- 
ficial viscosity introduced into regions of large gradients is due mainly to errors in dis- 
cretizing the convection terms of the Navier-Stokes equations (or Reynolds equations). In 
the case of large Reynolds numbers, this viscosity actually overshadows the effect of actual 
transport processes and seriously distorts the flow pattern [8-10]. Good agreement was ob- 
tained between relations derived for the artificial viscosity coefficient Vf on the basis 
of numerical experiments for two-dimensional shear flows on a uniform grid with a mesh A in 
a modeling of circulating flow in a square cavity induced by the motion of one of the bound- 
aries (see [9], for example) and from the analysis in [8] of the first differential approxi- 
mation by means of a coordinate rotation. Following [8], we write 

~ f - -  4 T + 0 qAsin(20). (1 )  

The maximum v a l u e s  o f  a r t i f i c i a l  v i s c o s i t y  a r e  o b t a i n e d  w i t h  c o n v e c t i v e  t r a n s p o r t  o f  t h e  
d e t e r m i n i n g  q u a n t i t i e s  a l o n g  a d i a g o n a l  o f  t h e  comput ing  g r i d .  Thus,  a r t i f i c i a l  d i f f u s i o n  
can  be r e d u c e d s i g n i f i c a n t l y  in  c a l c u l a t i o n s  by r e o r i e n t i n g  he c e l l s  a l o n g  t h e  d i r e c t i o n  o f  
t h e  v e l o c i t y  v e c t o r  in  r e g i o n s  o f  l a r g e  g r a d i e n t s  o f  t h e  f low p a r a m e t e r s  - e s p e c i a l l y  in  
t h e  s h e a r  l a y e r s .  

Two t y p e s  o f  g r i d s  were  used  in  t h e  n u m e r i c a l  s t u d i e s  t o  model  s u p e r s o n i c  f l o w  a b o u t  a 
c y l i n d e r  o f  d i a m e t e r  D w i t h  a d i s k  n o z z l e  ( F i g .  l b )  h a v i n g  t h e  g e o m e t r i c  d i m e n s i o n s :  d = 0 . 2 3 ,  
6 = 0 . 0 7 ,  d o = 0 .1  ( a l l  o f  t h e  d i m e n s i o n s  a r e  g i v e n  in  p e r c e n t s  o f  t h e  c y l i n d e r  d i a m e t e r ;  as  
t h e  c h a r a c t e r i s t i c  v a l u e s  in  n o r m a l i z i n g  t h e  gasdynamic  p a r a m e t e r s ,  we chose  t h e  d e n s i t y  and 
v e l o c i t y  o f  t h e  u n d i s t u r b e d  f l o w ) .  The Mach number M~ o f  t h e  u n d i s t u r b e d  f low was g i v e n  a 
v a l u e  o f  4 . 1 5 ,  w h i l e  t h e  p r o j e c t i o n  o f  t h e  d i s k  s r a n g e d  f rom 0 .9  t o  1 . 8 .  The r e c t a n g u l a r  
g r i d  shown in  F i g .  l b  was used  t o  model  t h e  f low in  [4 ,  5] and in  s e v e r a l  o t h e r  s t u d i e s .  I t  
f o l l o w s  f rom (1)  t h a t  t h e  s h e a r  l a y e r  which  d e v e l o p s  on t h e  b o u n d a r y  o f  t h e  c i r c u l a t i n g  f low 
w i t h  t h e  e x t e r n a l  f l o w  i s  t o  a c o n s i d e r a b l e  e x t e n t  due t o  a r t i f i c i a l  v i s c o s i t y .  A g r i d  
w i t h  o b l i q u e  c e l l s  ( F i g .  l c )  was c o n s t r u c t e d  so t h a t  t h e  l o n g i t u d i n a l  b o r d e r s  o f  t h e  c e l i s  
in  t h e  s h e a r - f l o w  r e g i o n  would be o r i e n t e d  p a r a l l e l  t o  t h e  v e l o c i t y  v e c t o r  o f  t h e  f low as 
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Fig. 2 Fig. 3 

Fig. 2. Dependence of the coefficient of wave resistance C~ of the 
body on the projection of the disk s (a) and profiles of static pres- 
sure on the end surface of the cylinder for s = 1.45 (b): I, 2) cal- 
culations on rectangular and oblique grids; 3) experiment; 4) calcu- 
lation with a superimposed shear layer. 

Fig. 3. Distributions of the axial component of velocity u on the 
connector between the disk and cylinder (a) and of the radial velo- 
city component v on the front end of the cylinder (b) with s = 1.45; 
I, 2) calculations on rectangular and oblique grids; 3) calculation 
with a superimposed shear layer. 

much as possible and, thus, the effect of artificial viscosity would be reduced. It should 
be noted that in the last case the upper boundary of the theoretical region is inclined to- 
ward the symmetry axis in order to alleviate erosion of the curvilinear shock wave. Calcula- 
tions were performed on the basis of Godunov's nonsteady finite-difference scheme [3]. The 
boundary conditions were formulated in the usual manner [4, 5]. The dimensions of the theo- 
retical region in both cases were chosen so that an undisturbed flow existed on the top 
boundary. 

We chose a body configuration with a projecting disk with s = 1.45 as the base variant 
for comparison of the theoretical and experimental results. For a nonuniform rectangular 
grid on the disk, the connector, and the front surface of the cylinder, we provided 8, 26, 

and 17 cells, respectively. The minimum and maximum meshes of the grid were 0.05 
and 0.085 in the axial direction and 0.014 and 0.025 in the radial direction. There were 
16, 26, and 16 cells, respectively, on the oblique grid on the disk,, connector, and front 
end of the surface. The minimum and maximum meshes were 0.03 and 0.08 in the axial direc- 
tion and 0.015 and 0.0325 in the radial direction (on the front end of the cylinder). The 
number of time intervals until establishment of the flow, was on the order of 1500-2500. 
The flow about the body was considered to be established when the determining parameters of 
the flow began to change only by small, prescribed amounts. Using the same variant, we 
measured static pressure on the front of the cylinder at M~ = 4.15 (the Reynolds number Re, 
determined from the velocity of the undisturbed flow and the cylinder diameter, was 1.6"106). 
We also conducted gravimetric tests of the model to determine the dependence of the coeffi- 
cient of wave resistance C~ of the body (normalized over the cross-sectional area of the 
cylinder) on the projection of the disk nozzle s [6]. 

Figures 2-4 show some of the results obtained. 

It turns out that the solution of the problem depends appreciably on the type of com- 
puting grid used. The substantial difference between the coefficients of wave resistance 
(on the order of 30-40%), profiles of static pressure, and axial and radial velocity compo- 
nents with the change from the oblique grid to the rectangular grid is connected with the 
difference in the amount of artificial viscosity (see Fig. 4b) realized when the grids are 
used. For example, as was shown in [5], the difference solution of the problem of super- 
sonic flow about bodies with a forward separation zone within the framework of the ideal 
fluid model does not depend on the initial conditions of the problem if it is obtained by 
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Fig. 4. Profiles of artificial vis- 
cosity ~f (a) and the axial velocity 
component u (b) in a section perpen- 
dicular to the symmetry axis and lo- 
cated a distance x = 0.69 from the 
projecting disk for s = 1.45: i, 2) 
calculations on rectangular and ob- 
lique grids; 3) calculation with a 
superimposed shear layer. 

the establishment method. Thus, viscous effects play a very significant role in the for- 
mation of the steady circulating flow. 

The results shown, together with data from methodological investigations (see [5], for 
example), permit the conclusion that the type of grid has a greater effect on the solution 
than does a significant change in the mesh of the grid. It is evidently possible to ob- 
tain different solutions with the construction of different grids having the same (limited) 
number of cells. Thus, the reliability of the solution of the problem with the above- 
examined idealized formulation is not so apparent. In this connection, it is interesting 
to note that the methods analyzed here for constructing grids are to a certain degree limit- 
ing for the problem being studied, since minimal structural viscosity is introduced with the 
oblique grid and maximal artificial viscosity is introduced with the rectangular grid (Fig. 
4a). We should also point out that the experimental values of the coefficient C~ and the 
static pressure lie between the values calculated on both grids. 

On the whole, the results obtained confirmed the original presumption regarding the 
decisive effect of the shear layer on the circulating flow. In calculations on the oblique 
grid, the nearly complete exclusion of artificial viscosity in the region of mixing of the 
flows on the boundary between the circulating flow and the external flow leads to sudden 
decay of the flow in the region between the disk and cylinder (Figs. 3 and 4). In this case, 
the flow in the circulation zone is practically isobaric, except for a small neighborhood 
about the point of attachment of the dividing line of the flow. Here, a local pressure 
maximum is realized (see Fig. 2b). In this regard, the solution obtained on the oblique 
grid is similar to solutions obtained with the use of adaptive algorithms and in essence 
describes the flow of an ideal fluid with a tangential discontinuity (see Fig. 4b) and a 
nearly stagnant region between the disk and cylinder. The coefficient of wave resistance 
of the body and the pressure profile on the end surface of the cylinder in the calculations 
on this grid are below the experimental values, which indicates that turbulent transport in 
the shear layer has an effect on the distribution of local loads on the body and its total 

drag. 

Calculations of supersonic flow about the body performed on the rectangular grid showed 
the presence of intensive diffusive transport in the region of the shear layer, which leads 
to the formation of a developed circulation zone with a maximum flow velocity on the order 
of 30-40% of the velocity of the undisturbed flow (Fig. 3). The solution is characterized 
by strong erosion of the shear layer (Fig. 4b), displacement of the point of attachment of 
the dividing line of the flow toward the symmetry axis relative to the position of this point 
in the calculations on the oblique grid, and mechanical loads on the end of the cylinder 
and the body as a whole, which are higher than the experimental loads (Fig. 2a and b). 
Thus, despite the fact that the suppression of artificial viscosity leads to qualitative 
similitude of the modeled flow and its physical analog (note the similitude of the pressure 
profiles in Fig. 2b), the quantitative disagreement of the theoretical and experimental re- 
suits indicates the inadequacy of the mechanisms of artificial and eddy diffusion. 

It follows from the above that difference modeling of supersonic flow about a cylinder 
with a projecting disk on the basis of the system of nonsteady Eulerian equations does not 
provide a unique solution on the grids which can be used with modern computers. The model- 
ing fails to do so because of the unsatisfactory reproduction of the calculation of circulat- 
ing flow between the disk and cylinder. Turbulent transfer of momentum and energy in the 
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shear layer which develops on the mixing boundary of flows with different physical pro- 
perties plays the deciding role in the formation of circulating flows of the type examined 
here. Thus, to describe this or a similar flow with circulation zones within the frame- 
work of the ideal fluid model corresponding to maximum Reynolds numbers (Re + ~), it is ne- 
cessary to at least consider the features inherent to turbulent flow in the shear layer. It 
seems logical that such a "hybrid" approach to the solution of the stated problem could be 
realized by isolating the shear layer during the solution and examining turbulent fluid mo- 
tion in the layer. Here, we combine the solutions inside the shear layer and outside it, 
where the above algorithms are used. 

Turbulent motion in the shear layer can be described by the system of Reynolds equations 
closed by means of some turbulence model. The effort to construct sufficiently simple and 
relatively convenient algorithms stimulated us to select a semiempirical convective Prandtl 
model of turbulence. Calculation of separated turbulent flows of an incompressible fluid at 
high Reynolds numbers (see [i0], for example) showed that in a region with large parameter 
gradients, it is best to reduce artificial viscosity either by increasing the order of the 
difference scheme approximation or by using computing grids which are adaptive to the flow 
features. Thus, in solving the stated problem of flow about a cylinder with a projecting 
disk, we used an oblique grid with a reference line which joined the sharp edges of the disk 
and cylinder (see Fig. id). We also condensed the grid around the reference line. 

Within the limits of an a priori prescribed shear layer, the Reynolds equations in cylin- 
drical coordinates x,% and r are represented in generalized form similar to the Eulerian 
equations. The Reynolds equations have additional terms describing turbulent transfer of 
momentum and energy and energy dissipation: 

O~ OA ON F 
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In keeping with the adopted Prandtl turbulence model, the eddy viscosity coefficient is 
determined in the form 

v t : C t (Urea x -- Umin) b, ( 3 ) 

where Uma x and Umi n are the flow velocities on the boundaries of the shear layer; C t is an 
empirical constant; b is the thickness of the layer. The thickness of the layer is calcula- 
ted in accordance with the similarity solution [ii] 

b =c.ns, (a) 
where C n is an empirical constant; s is the coordinate reckoned along the reference line. 

The eddy viscosity coefficient is assumed to be constant over the thickness of the 
shear layer, so that the components of the turbulent friction tensor undergo a discontinuity 
on the boundaries of the layer first stage of the study entails introduction of the presump- 
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tion of symmetrical development of the shear layer along the reference line. The turbulence 
constant is selected on the basis of recommendations made in several investigations (see 
[ii, 12], for example) and is checked during the study by comparing theoretical and experi- 
mental results. Also, the correctness of the choice of the constant C n needed to determine 
the thickness of the shear layer b is evaluated indirectly by measuring the thickness of the 
layer above the reference line using data from optical visualization of the flow. The range 
of the constant was determined by investigation: C n = 0.08-0.13; C t = 0.01-0.015. Most of 
the calculations were performed with the values C n = 0.085 and C t = 0.015. 

Figures 2-4 show results of calculations performed by the method described above. We 
should point out not only the good agreement between the theoretical and experimental results 
on the coefficient of wave resistance and the static pressure distribution on the end sur- 
face of the cylinder (Fig. 2), but also the fairly high velocity of circulating flow. The 
velocity reaches 30% of the velocity of the undisturbed flow. It should be noted that use of 
the shear model does not significantly change the external flow and has almost no effect on 
the position of the point of attachment of the flow on the forward end of the cylinder (Fig. 
3). 

Thus, the "hybrid" approach proposed here for the solution of problems of separated flow 
of an ideal fluid about bodies with allowance for the turbulent shear layer developing on 
the boundary of the separation region makes it possible to expand the range of application of 
the adaptive algorithms devised in [1-3]; the reliable prediction achieved here for local and 
integral mechanical characteristics for the above-examined special problem of supersonic flow 
about a cylinder with a projecting disk nozzle indicates that it is possible to generalize 
the approach to the class of problems of flow (subsonic and supersonic) about bodies of fair- 
ly arbitrary shape. This includes the problem of calculating flow in the near wake behind 
the body. 

NOTATION 
x, ~, r, axial, circumferential, and radial coordinates, respectively; u, v, axial and 

radial components of velocity; q, modulus of flow velocity vector; 0, angle between flow velo- 
city vector and syn~netry axis; p, density of the gas; v, kinematic viscosity coefficient; T, 
temperature; p, static pressure; d, diameter of disk; ~, projection of disk ahead of cylinder; 
6, thickness of disk; d o , diameter of connector; D, diameter of cylinder; A, mesh of grid; M, 
Mach number; Re, Reynolds number; CW'x coefficient of wave resistance; Cp, C v, heat capacities 
at constant pressure and volume, respectively; Pr t, turbulent Prandtl number. The indices: 
~, parameters of theundisturbed flow; T, turbulent characteristics; f, parameters charac- 
terizing artificial diffusion. 
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